FM Geometry Vocabulary/Properties/Postulates//Theorems for Chapter 2

| Conditional Statements If-Then Statements Conpothesis |  |
| :--- | :--- |
| Conclusion $\quad$ Converse | Counterexample Biconditional |
| Addition Property of Equality | Subtraction Property of Equality |
| Multiplication Property of Equality | Division Property of Equality |
| Distributive Property | Substitution Property of Equality |
| Reflexive Property of Equality | Reflexive Property of Congruence |
| Symmetric Property of Equality | Symmetric Property of Congruence |
| Transitive Property of Equality | Transitive Property of Congruence |
| Parts of a Proof | Reasons Used in a Proof |
| Supplementary Angles | Vertical Angles |

Angle Bisector Theorem \#1: If $\overrightarrow{B X}$ is the bisector of $\angle A B C$, then $m \angle A B X=\frac{1}{2} m \angle A B C, m \angle X B C=\frac{1}{2} m \angle A B C$, and $m \angle A B X=m \angle X B C$.

Vertical Angles Theorem: Vertical angles are congruent.
Right Angles Theorem: All right angles are congruent.
Thrm: Two lines are perpendicular if and only if they form congruent adjacent angles.
Thrm: If the exterior sides of two adjacent acute angles are perpendicular, then the angles are complementary.

Congruent Complements Theorem: If two angles are complements of the same or congruent angles, then the two angles are congruent.

Congruent Complements Converse: If two angles are congruent, then they are complementary to the same or congruent angles.

Congruent Supplements Theorem: If two angles are supplements of the same or congruent angles, then the two angles are congruent.

Congruent Supplements Converse: If two angles are congruent, then they are supplementary to the same or congruent angles.

